Solid Phase Synthesis of N-Alkyl-N-(β-Keto)amides and 1,2,4,5-Tetrasubstituted Imidazoles Using a Traceless Cleavage Strategy

H. Boon Lee and Shankar Balasubramanian*

University Chemical Laboratory, University of Cambridge, Cambridge CB2 1EW, U.K.

sb10031@cam.ac.uk

SUPPORTING INFORMATION

Experimental

General. Chemicals and low-loading Merrified resin (1.05 mmol of Cl/g) were purchased from Aldrich Chemical Co. and used without further purification. High-loading Merrifield resin (3.75 mmol of Cl/g) was purchased from Polymer Lab and used without further purification. The loading of the commercial resins was determined by halogen elemental analysis, prior to use. Anhydrous solvents were purchased from Aldrich or Fluka Chemical Corp. General washing procedure for resin samples: for every 100 mg of resin, three aliqouts of 2 mL of DMF, THF, THF/H₂O, THF, MeOH, THF and dichloromethane (DCM) were used in succession. FTIR spectra of resin samples were taken as a gel in CH₂Cl₂. ¹³C gel phase NMR data were acquired on DRX400 Bruker in CDCl₃ and chemical shifts are quoted relative to solvent signals. Standard conditions were used: acquisition time = 0.1 s, 10 ns delay between pulses, no. of scans = 3.5×10^5). Elemental analyses were performed by Zeneca Pharmaceuticals, UK.

Synthesis of *N*-benzyl-*N*-methylaminoacetophenones. (1 and 2)¹¹ A solution of 4hydroxybenzaldehyde (611 mg, 5 mmol) or vanillin (760 mg, 5 mmol) and methylamine (3.5 mL, 7 mmol, 2M in THF) in THF (2 mL) was stirred for 10 min. at room temperature. Solid NaBH₄ (95 mg, 2.5 mmol) was added portionwise, and the mixture stirred for 1 h. α -Bromoacetophenone (1.05 g, 5.25 mmol) was added and stirring was continued at room temperature for 1 h. Water was added and the mixture was extracted with DCM (3×10 mL) and the combined extracts were dried over MgSO₄, concentrated and purified by silica gel column chromatography eluting wih 1:1 EtOAc/Hex to yield

N-(4-hydroxybenzyl)-N-methylaminoacetophenone 1(6.9 mg, 83%): $\delta_{\rm H}$ (250 MHz) 2.37 (3H, s), 3.63 (2H, s), 3.79 (2H, s), 6.80 (2H, d, J = 8.4), 7.17 (2H, d, J = 8.4), 7.42 (2H, t, J = 7.2), 7.54 (1H, t, J = 7.2), 7.92 (2H, d, J = 7.2) in agreement with data published by Venkov et al.¹¹

N-(4-hydroxy-3-methoxybenzyl)-N-methylaminoacetophenone **2**(6.9 mg, 81%): $\delta_{\rm H}$ (250 MHz) 2.39 (3H, s), 3.61 (2H, s), 3.78 (2H, s), 3.83 (3H, s), 6.77 (1H, d, J = 8.0), 6.83 (1H, d, J = 8.0), 6.89 (1H, s), 7.42 (2H, t, J = 7.2), 7.51 (1H, t, J = 7.2), 7.94 (2H, d, J = 7.2) in agreement with data published by Venkov et al.¹¹

Resin-bound Tertiary Amines 3 and 4. Sodium hydride (84 mmol, 2.34 g) was added slowly (in 10 min) to a solution of N-(4-hydroxybenzyl)-N-methylaminoacetophenone (88 mmol, 10.75 g) or N-(4-hydroxy-3-methoxybenzyl)-N-methylaminoacetophenone in anhydrous DMF (150 mL) at 0 °C and stirring was continued for one hour at room temperature. This solution was transferred *via* a syringe to Merrifield resin (3.75 mmol of Cl/g, 37.5 mmol, 10 g, Polymer Lab) pre-swollen in DMF (50 mL) and the suspension stirred at 25 °C for 24 hours. Resin suspension was filtered and washed with dil. HCl/THF and following general procedure and dried for 1 day to yield

Resin-Bound Tertiary Amine 3: v_{max} 1697; Found: N, 1.28, Cl, 0.37 (90%)

Resin-Bound Tertiary Amine 4: v_{max} 1697; Found: N, 1.23, Cl, 0.48 (87%)

Resin-Bound Benzaldehyde 5. Sodium hydride (84 mmol, 2.34 g) was added slowly (in 10 min) to a solution of 4-hydroxybenzaldehyde (88 mmol, 10.75 g) and tetrabutylammonium iodide (3.75 mmol, 1.5 g) in anhydrous DMF (150 mL) at 0 °C and stirring was continued for one hour at room temperature. This solution was transferred *via* a syringe to Merrifield resin (3.75 mmol of Cl/g, 37.5 mmol, 10 g, Polymer Lab) pre-swollen in DMF (50 mL) and the suspension stirred at 25 °C for 24 hours. Resin suspension was filtered and washed with dil. HCl/THF and following general procedure and dried for 1 day to yield **5**: v_{max} 1694, 1685; δ_{C} (100 MHz) 70.2, 115.0, 130.1, 132.0, 163.8, 190.7.

Resin-Bound Secondary Amine 6a. *n*-Butylamine (redistilled over CaH₂, ~100 mmol, 10 mL) was added to benzaldehyde resin **5** (~20 mmol, 6g) suspension in 2:1 anhydrous THF/TMOF (60 mL). After sonicating for 5 min, the suspension was left stirring overnight at room temperature. Treatment with *n*-butylamine was repeated if reaction appeared incomplete by gel phase FTIR. The resin was drained, washed with THF and resuspended in 2:1 THF/TMOF (60 mL). Portions of lithium borohydride (50 mmol, 1.1 g) were added to the stirred resin suspension and stirring continued for 1 day or until imine band (1641) has disappeared according to gel phase FTIR. Resin suspension was filtered and washed with sat. NH₄Cl/THF and following general procedure and dried for one day to yield **6a**: v_{max} 3263; Anal. Calcd: N, 3.42. Found: N, 3.24; Loading = 2.30 mmol/g (94%); $\delta_{\rm C}$ (100 MHz) 13.7, 20.0, 28.2, 52.9, 59.0, 70.0, 115.1, 131.0.

Resin-Bound Secondary Amine 6b-d. Same procedure as for **6a** except *iso*-propylamine (**6b**, 10 mmol, 0.85 mL) or benzylamine (**6c**, 10 mmol, 1.1 mL) or aniline (**6d**, 10mmol, 0.9 mL), resin **5** (~2 mmol, 500 mg), 2:1 THF/TMOF (5 mL) and lithium borohydride (5 mmol, 110 mg) were used respectively. FTIR band for the imines is given in *italics*.

Resin 6b: v_{max} *1641*, 3262; Anal. Calcd: N, 3.54. Found: N, 3.08; Loading = 2.20 mmol/g (87%); δ_{C} (100 MHz) 21.5, 48.2, 49.6, 70.0, 114.8, 129.3, 130.2.

Resin 6c: v_{max} 1641, 3201, 3265; Anal. Calcd: N, 3.16. Found: N, 2.90; Loading = 2.07 mmol/g (92%); δ_{C} (100 MHz) 53.0, 58.2, 70.0, 114.9, 128.8, 129.7 131.4.

Resin 6d: *v*_{max} *1623*, 3417; Anal. Calcd: N, 3.25. Found: N, 3.16; Loading = 2.25 mmol/g (97%); δ_C (100 MHz) 47.6, 70.0, 112.8, 114.8, 117.4, 128.7, 129.2, 131.5, 148.1.

Resin-Bound Tertiary Cleavage Amine 7a and with Acid Chloride (8a). Diisopropylethylamine (0.87 mmol, 153 µL) was added to a suspension of resin-bound secondary amine 6a (46 mmol, 200 mg) and 4-chlorophenacyl bromide (0.92 mmol, 215 mg) in anhydrous DMF (2.2 mL) and stirring was continued at 45 °C for 16 hours. Resin suspension was filtered and washed with DMF, DMF/H₂O, DMF and following general procedure and dried for one day. A gel phase FTIR spectrum of **7a** was taken. δ_C (100 MHz) 14.0, 20.4, 29.2, 54.2, 58.1, 60.6, 70.0, 114.5, 128.5, 129.9. A portion of this resin 7a (~1.8 mmol/g, ~0.09 mmol, 50 mg) was suspended in anhydrous DMF (1 mL) and the mixture stirred at room temperature for 30 min. Acetyl chloride (0.55 mmol, 40 μ L) was added dropwise to the resin and the mixture stirred at 45 °C for 6 hours. Resin suspension was filtered and washed with THF, MeOH, THF, DCM, MeOH, DCM and the washing was concentrated *in vacuo*. This crude filtrate in DMF was stirred with aminomethylpolystyrene (1.8 mmol/g, 0.9 mmol, 500 mg, Polymer Lab) in DCM for 1 hour at room temperature. The resin-treated solution was either concentrated to yield N-(n-*butyl*)-N-(4'-*chlorophenacyl)acetamide* **8a** (19.8 mg, 87%) or cyclised to the imidazole: R_t 11.64; *R_f* 0.30 (1:1 EtOAc/Hex); v_{max} 1641, 1704; $\delta_{\rm H}$ (250 MHz) 0.94 (3H, t, *J* = 7.5), 1.34 (2H, sx, *J* = 7.5), 1.56 (2H, qn, *J* = 7.5), 4.72 (2H, s), 7.44 (2H, d, *J* = 8.6), 7.90 (2H, d, *J* = 8.6); $\delta_{\rm C}$ (62 MHz) 13.8, 20.0, 21.0, 30.8, 49.7, 51.8, 129.0, 129.4, 133.69, 139.96, 170.84, 193.42; EIMS *m*/*z* 268 (M⁺), 226 (found: M⁺ 267.1026, C₁₄H₁₈NO₂Cl requires M 267.10260).

Resin-Bound Tertiary Amine 5b-d and Cleavage with Acid Chloride (8b-d). Same procedure as for **7a/8a** except resin-bound secondary amine **6b-d** (44 mmol, 200 mg of **6b**; 41 mmol, 200 mg of **6c**; 45 mmol, 200 mg of **6d**)was used respectively.

N-(isopropyl)-N-(4'-chlorophenacyl)acetamide **8b** (6.9 mg, 33%): R_t 10.62; R_f 0.30 (2:1 EtOAc/Hex); v_{max} 1635, 1702; δ_H (250 MHz) 1.20 (6H, d, J = 6.7), 2.23 (3H, s), 2.19 (1H, sp, J = 6.7), 4.56 (2H, s), 7.44 (2H, d, J = 8.6), 7.93 (2H, d, J = 8.6); δ_C (100 MHz) 21.1, 21.3, 46.5, 49.2, 129.0, 129.4, 133.9, 140.0, 170.2, 193.1; EIMS *m*/*z* 253 (M⁺), 210 (found: M⁺-43 210.0681, C₁₀H₉NO₂Cl requires M-43 210.06856).

N-*benzyl*-N-(4'-*chlorophenacyl*)*acetamide* **8c** (13.8 mg, 58%): R_t 12.20; R_f 0.32 (1:1 EtOAc/Hex); v_{max} 1660, 1700; δ_{H} (250 MHz) 2.28 (3H, s), 4.66 (2H, s), 4.73 (2H, s), 7.20-7.43 (8H, m), 7.85 (2H, d, J = 8.6); δ_{C} (62 MHz) 21.3, 51.2, 53.0, 126.7, 127.9, 129.0, 129.4, 133.5, 136.1, 140.1, 171.5, 193.2; EIMS *m*/*z* 301 (M⁺), 258 (found: M⁺ 301.0858, C₁₇H₁₆NO₂Cl requires M 301.08695).

N-phenyl-N-(4'-chlorophenacyl)acetamide 8d (0 mg, 0%)

Resin-Bound Tertiary Amine 57e-m and Cleavage with Acid Chloride (8e-m). Same procedure as for **7a/8a** except 2-bromo-4'-methoxyacetophenone (0.92 mmol, 215 mg for **7e**) or 1-

bromopinacolone (0.92 mmol, 126 μ L for **7f**) or 1-bromo-2-butanone (0.92 mmol, 78 μ L for **7g**) or α -bromo-4-(1-pyrrolidino)acetophenone (0.92 mmol, 191 mg for **7h**) or α -bromopropiophenone (0.92 mmol, 116 μ L for **7i**) or desyl bromide (0.92 mmol, 261 mg for **7j**) or ethyl bromopyruvate (0.92 mmol, 128 μ L for **7k**) or 2-chlorocyclopentanone (0.92 mmol, 94 μ L for **7l**) or 2-chloro-*N*,*N*-dimethylacetoacetamide (0.92 mmol, 130 μ L for **7m**) was used respectively.

N-(n-*butyl*)-N-(4'-*methoxyphenacyl*)*acetamide* **8e** (19.9 mg, 88%): R_t 10.84; R_f 0.33 (2:1 EtOAc/Hex); v_{max} 1648, 1690; δ_{H} (250 MHz) 0.94 (3H, t, J = 7.2), 1.33 (2H, sx, J = 7.2), 1.56 (2H, qn, J = 7.2), 2.19 (3H, s), 3.34 (2H, t, J = 7.2), 3.86 (3H, s), 4.74 (2H, s), 6.93 (2H, d, J = 9.0), 7.95 (2H, d, J = 9.0); δ_{C} (62 MHz) 13.8, 20.1, 21.0, 30.7, 49.6, 51.4, 55.5, 113.9, 128.4, 130.3, 163.8, 170.8, 192.9; EIMS *m*/*z* 263 (M⁺), 220 (found: M⁺ 263.1522, C₁₅H₂₁NO₃ requires M 263.15213).

N-(n-*butyl*)-N-(*1-pinacolone*)*acetamide* **8f** (16.4 mg, 82%): R_f 0.38 (1:1 EtOAc/Hex); v_{max} 1639, 1718; $\delta_{\rm H}$ (250 MHz) 0.93 (3H, t, J = 7.4), 1.20 (9H, s), 1.32 (2H, sx, J = 7.4), 1.50 (2H, qn, J = 7.4), 2.13 (2H, s), 3.25 (2H, t, J = 7.4), 4.25 (2H, s); $\delta_{\rm C}$ (62 MHz) 13.8, 20.0, 20.9, 26.4, 30.8, 49.8, 50.4, 170.3, 211.3; EIMS *m*/*z* 214 (M⁺), 170 (found: M⁺ 214.1804, C₁₂H₂₃NO₂ requires M 214.18069).

N-(n-*butyl*)-N-(2-*butanone*)*acetamide* **8g** (14.8 mg, 81%): R_f 0.21 (2:1 EtOAc/Hex); v_{max} 1639, 1734; $\delta_{\rm H}$ (250 MHz) 0.94 (3H, t, J = 7.1), 1.08 (3H, t, J = 7.2), 1.32 (2H, sx, J = 7.1), 1.52 (2H, qn, J = 7.1), 2.14 (3H, s), 2.45 (2H, q, J = 7.2), 3.29 (2H, t, J = 7.1), 4.08 (2H, s); $\delta_{\rm C}$ (62 MHz) 7.4, 13.8, 20.0, 21.0, 30.9, 33.3, 50.0, 54.8, 170.8, 206.3; EIMS *m*/*z* 185 (M⁺), 143 (found: MH⁺ 186.1494, C₁₀H₁₉NO₂ requires M 186.14939).

N-(n-*butyl*)-N-(4'-(1"-*pyrrolidino*)*phenacyl*)*acetamide* **8h** (6.8 mg, 28%): R_t 12.86; R_f 0.34 (2:1 EtOAc/Hex); v_{max} 1645, 1671; δ_{H} (400 MHz) 0.93 (3H, t, J = 7.3), 1.32 (2H, sx, J = 7.3), 1.56 (2H, qn, J = 7.3), 2.02-2.07 (4H, m), 2.19 (3H, s), 3.32-3.41 (6H, m), 4.73 (2H, s), 6.50 (2H, d, J = 8.9), 7,86 (2H, d, J = 8.9); δ_{C} (100 MHz) 13.8, 20.1, 20.2, 25.4, 30.6, 47.5, 49.4, 50.8, 110.8, 122.8, 130.3, 151.2, 170.7, 192.0; EIMS *m*/*z* 302 (M⁺), 260 (found: M⁺ 302.1997, C₁₈H₂₆N₂O₂ requires M 302.19942).

N-(n-*butyl*)-N-(α -methylphenacyl)acetamide **8i** (6.5 mg, 30%): R_t 12.03; R_f 0.39 (2:1 EtOAc/Hex); v_{max} 1639, 1689; δ_{H} (400 MHz) 0.94 (3H, t, J = 7.3), 1.32 (2H, sx, J = 7.3), 1.34 (3H, d, J = 7.3), 1.58 (2H, qn, J = 7.3), 2.14 (3H, s), 2.45 (2H, q, J = 7.3), 3.28 (2H, t, J = 7.3), 7.44 (2H, t, J = 7.3), 7.55 (1H, t, J = 7.3), 7.97 (2H, d J = 7.3); δ_{C} (100 MHz) 13.8, 20.0, 20.3, 21.0, 30.8, 49.9, 54.7, 128.3, 128.7, 133.3, 135.6, 170.5, 199.5; EIMS *m*/*z* 247 (M⁺), 204 (found: M⁺ 247.1579, C₁₅H₂₁NO₂ requires M 247.15722).

N-(n-butyl)-N-desylacetamide **8j** (~2.4 mg, ~10%): R_t 12.75; R_f 0.45 (1:1 EtOAc/Hex); QTOF m/z 310 (M⁺), 267 (found: M⁺ 310.1815, $C_{20}H_{23}NO_2$ requires M 310.1807); *insufficient material for full characterisation*.

N-(n-butyl)-N-(ethylpyruvate)acetamide **8k**, N-(n-butyl)-N-(2-cyclo-pentanone)acetamide **8l** and N-(n-butyl)-N-[α -acetyl- α -(N,N-dimethylacetamoyl)]acetamide **8m** (0 mg, 0%)

Resin-Bound Tertiary Amine 57n-p and Cleavage with Acid Chloride (8n-p). Same procedure as for 7a/8a except acetoxyacetyl chloride (0.55 mmol, 61 μ L for 8n) or ethyl oxalyl chloride (0.55 mmol, 62 μ L for 8o) or cyclohexanecarbonyl chloride (0.55 mmol, 75 μ L for 8p) was used respectively.

N-(n-*butyl*)-N-(4'-*chlorophenacyl*)*acetoxyacetamide* **8n** (14.1 mg, 51%): R_t 11.89; R_f 0.24 (2:1 EtOAc/Hex); v_{max} 1666, 1701, 1747; δ_H (250 MHz) 0.95 (3H, t, J = 7.2), 1.36 (2H, sx, J = 7.2), 1.59 (2H, qn, J = 7.2), 2.17 (3H, s), 3.30 (2H, t, J = 7.2), 4.73 (2H, s), 7.45 (2H, d, J = 8.6), 7.89 (2H, d, J = 8.6); δ_C (100 MHz) 13.7, 20.0, 20.6, 30.6, 48.0, 51.9, 61.0, 129.1, 129.4, 133.4, 140.2, 167.0, 170.6, 192.7; EIMS *m*/*z* 326 (M⁺), 224 (found: M⁺ 326.1174, C₁₆H₂₀NO₄Cl requires M 326.11590)

N-(n-*butyl*)-N-(4'-*chlorophenacyl*)*ethyloxalamide* **80** (18.0 mg, 65%): R_t 13.03; R_f 0.37 (1:3 EtOAc/Hex); v_{max} 1676, 1703, 1741; δ_H (250 MHz) 0.92 (3H, t, J = 7.4), 1.32 (2H, sx, J = 7.4), 1.39 (3H, t, J = 7.4), 1.61 (2H, qn, J = 7.4), 3.37 (2H, t, J = 7.4), 4.38 (2H, q, J = 7.4), 4.75 (2H, s), 7.46 (2H, d, J = 8.7), 7.91 (2H, d, J = 8.7); δ_C (100 MHz) 13.6, 14.0, 19.8, 30.4, 49.1, 50.6, 62.2, 129.2, 129.4, 133.2, 140.4, 162.2, 162.5, 191.5; EIMS *m*/*z* 325 (M⁺), 125 (found: M⁺ 325.1091, C₁₆H₂₀NO₄Cl requires M 325.10808).

N-(n-*butyl*)-N-(4'-*chlorophenacyl*)cyclo*hexanecarbonamide* **8p** (7.4 mg, 26%): R_t 13.79; R_f 0.33 (1:4 EtOAc/Hex); v_{max} 1639, 1699; δ_{H} (400 MHz) 0.96 (3H, t, J = 7.3), 1.26-1.83 (14H, m), 2.55 (1H, tt, J = 11.4, 3.1), 3.36 (2H, t, J = 7.3), 4.67 (2H, s), 7.43 (2H, d, J = 8.7), 7.90 (2H, d, J = 8.7); δ_{C} (62 MHz) 13.8, 20.0, 25.9, 29.5, 31.4, 40.6, 48.7, 50.0, 52.0, 129.0, 129.5, 133.8, 139.8, 176.6, 194.0; QTOF *m*/*z* 336 (MH⁺) (found: MH⁺ 336.1789, C₁₉H₂₇NO₂Cl requires MH 336.17302).

Resin-Bound Tertiary Amine 7q-s and Cleavage with Acid Chloride (8q-s). Same procedure as for 7a/8a except benzoyl chloride (0.55 mmol, 63 μ L for 8q) or 4-cyanobenzoyl chloride (0.55 mmol, 92 mg for 8r) or 4-methoxybenzoyl chloride (0.55 mmol, 94 mg for 8s) and *N*-methylmorpholine (0.14 mmol, 15 μ L) were used respectively.

N-(n-*butyl*)-N-(4'-*chlorophenacyl*)*phenamide* **8q** (23.0 mg, 82%): R_t 13.49; R_f 0.31 (1:3 EtOAc/Hex); v_{max} 1629, 1698; δ_{H} (250 MHz) 0.77 (3H, t, J = 7.2), 1.12 (2H, sx, J = 7.2), 1.50 (2H, qn, J = 7.2), 3.30 (2H, t, J = 7.2), 4.88 (2H, s), 7.27-7.47 (7H, m), 7.95(2H, d, J = 8.2); δ_{C} (62 MHz) 13.6, 19.7, 30.6, 50.0, 51.0, 126.7, 128.4, 129.1, 129.5, 133.7, 136.1, 140.0, 172.3, 193.0; EIMS *m*/*z* 329 (M⁺) (found: M⁺ 329.1164, C₁₉H₂₀NO₂Cl requires M 329.11825).

N-(n-*butyl*)-N-(4'-*chlorophenacyl*)-(4"-*cyano*)*phenamide* **8r** (25.4 mg, 84%): R_t 13.10; R_f 0.15 (1:3 EtOAc/Hex); v_{max} 1641, 1699, 2235; $\delta_{\rm H}$ (250 MHz) 0.80 (3H, t, J = 7.3), 1.71 (2H, sx, J = 7.3), 1.50 (2H, qn, J = 7.3), 3.26 (2H, t, J 7.3), 4.89 (2H, s), 7.49 (2H, d, J = 8.5), 7.60 (2H, d, J = 8.1), 7.75 (2H, d, J = 8.1), 7.95 (2H, d, J = 8.5); $\delta_{\rm C}$ (62 MHz) 13.6 19.7, 30.6, 50.1, 51.0, 113.5, 118.1, 127.5, 129.2, 129.4, 132.4, 140.5, 170.4, 192.2; EIMS *m/z* 355 (MH⁺) (found: MH⁺ 355.1208, C₂₀H₁₉N₂O₂Cl requires MH 355.12132).

N-(n-butyl)-N-(4'-chlorophenacyl)-(4"-methoxy)phenamide **8s** (~7.6 mg, ~25%): R_t 13.21; R_f 0.18 (1:3 EtOAc/Hex); v_{max} 1631, 1699; QTOF m/z 360 (M⁺) (found: M⁺ 360.1392, C₂₀H₂₂NO₃Cl requires M 360.1366); *insufficient material for full characterisation*.

Side Product from N-Benzoylation of 7a:

N-(n-butyl)-N-(4'-chlorophenacyl- α -benzoyl)phenamide: R_t 15.57; R_f 0.24 (1:7 EtOAc/Hex); $\delta_{\rm H}$ (250 MHz) 0.82 (3H, t, J = 7.5), 1.25 (2H, s, J = 7.5), 1.66 (2H, qn, J = 7.5) 3.78 (2H, t, J = 7.5)

7.5), 6.64 (1H, s), 7.19-7.71 (12H, m), 8.17 (2H, d, J = 8.1); $\delta_{\rm C}$ (62 MHz) 13.7, 20.2, 30.2, 47.0, 119.8, 125.7, 128.2, 128.9, 130.3, 130.8, 132.7, 134.2, 134.3, 135.7, 136.9, 163.6, 170.8; EIMS m/z 433 (M⁺) (found: M⁺ 433.1436, C₂₆H₂₄NO₃Cl requires M 433.14446).

General Procedure for Formation of Imidazole 9. Glacial acetic acid (1 mL), ammonium acetate (9 mmol, 70 mg) was added to the solution of tertiary amide **8** in residual DMF (~1 mL) and the mixture stirred at 90 °C for 24 hours. The reaction mixture was concentrated *in vacuo*, resuspended in DCM and filtered through a pack of silica gel to yield **9** after solvent removal.

l-(n-*butyl*)-2-*methyl*-4-(4'-*chlorophenyl*)*imidazole* **9a** (17.8 mg, 84%): R_f 0.23 (1:1 EtOAc/Hex); v_{max} 1606, 1725; δ_{H} (250 MHz) 0.96 (3H, t, J = 7.2), 1.37, (2H, sx, J = 7.2), 1.74 (2H, qn, J = 7.2), 2.41 (3H, s), 3.83 (2H, t, J = 7.2), 7.07 (1H, s), 7.30 (2H, d, J = 8.5)m 7.65 (2H, d, J = 8.5); δ_{C} (62 MHz) 13.0, 13.6, 19.8, 32.8, 46.0, 115.1, 125.8, 128.6, 131.8, 133.0, 138.8, 145.0; EIMS *m*/*z* 248 (M⁺) (found: M⁺ 248.1082, C₁₄H₁₇N₂Cl requires M 248.10802).

1-iso-*propyl-2-methyl-4*-(*4*'-*chlorophenyl*)*imidazole* **9b** (5.0 mg, 26%): R_t 10.55; R_f 0.11 (1:1 EtOAc/Hex); v_{max} 1598, 1721; δ_{H} (250 MHz) 1.46 (6H, d, J = 6.7), 2.45 (3H, s), 4.32 (1H, sp, J = 6.7), 7.17 (1H, s), 7.31 (2H, d, J = 8.6), 7.67 (2H, d, J = 8.6); δ_{C} (62 MHz) 23.4, 32.5, 45.7, 114.9, 126.1, 128.8, 131.6, 132.8, 138.6, 144.9; QTOF *m*/*z* 235 (MH⁺) (found: MH⁺ 235.1029, C₁₃H₁₆N₂Cl requires MH 235.10019).

1-benzyl-2-methyl-4-(4'-chlorophenyl)imidazole **9c** (12.1 mg, 54%): R_t 12.00; R_f 0.15 (2:1 EtOAc/Hex); v_{max} 1602, 1738; δ_{H} (250 MHz) 2.40 (3H, s), 5.07 (2H, s), 7.10-7.14 (3H, m), 7.29-7.37 (5H m), 7.66 (2H, d, J = 8.6); δ_{C} (62 MHz) 13.1, 50.0, 115.8, 125.9, 126.8, 128.2, 128.7, 129.1, 132.1, 132.7, 136.0, 139.1, 145.6; EIMS *m/z* 282 (M⁺) (found: M⁺ 282.0921, C₁₇H₁₅N₂Cl requires M 282.09237).

1-(n-*butyl*)-2-*methyl*-4-(4'-*methoxyphenyl*)*imidazole* **9e** (18.0 mg, 79%): R_t 10.87; R_f 0.20 (2:1 EtOAc/Hex); v_{max} 1604, 1709; δ_{H} (400 MHz) 0.96 (3H, t, J = 7.3), 1.37, (2H, sx, J = 7.3), 1.73 (2H, qn, J = 7.3), 2.41 (3H, s), 3.81 (3H, s), 3.82 (2H t, J = 7.3), 6.89 (2H, d, J = 8.9), 6.99 (1H, s), 7.64 (H, 2H, d, 8.9); δ_{C} (62 MHz) 13.0, 13.6, 19.8, 32.8, 45.9, 55.3, 113.8, 113.9,

125.8, 127.3, 139.6, 144.6, 158.4; EIMS m/z 244 (M⁺) (found: M⁺ 244.1584, C₁₅H₂₀N₂O requires M 244.15755).

l-(n-*butyl*)-2-*methyl*-4-(tert-*butyl*)*imidazole* **9f** (14.6 mg, 80%): R_t 10.07; R_f 0.10 (2:1 EtOAc/Hex); v_{max} 1600, 1702; δ_{H} (250 MHz) 0.05 (3H, t, J = 7.4), 1.28 (9H, s), 1.34 (2H, sx, J = 7.4), 1.70 (2H, qn, J = 7.4), 2.46 (3H, s), 3.77 (2H, t, J = 7.4); δ_{C} (100 MHz) 11.6 13.5, 19.8, 29.8, 31.2, 32.4, 40.1. 112.8, 143.7, 147.5; QTOF *m*/*z* 195 (M⁺) (found: M⁺ 195.1855, C₁₂H₂₂N₂ requires M 195.1861).

1-(n-*butyl*)-2-*methyl*-4-*ethylimidazole* **9g** (12.8 mg, 78%): R_t 8.75; R_f 0.10 (2:1 EtOAc/Hex); v_{max} 1606, 1734; δ_{H} (250 MHz) 0.95 (3H, t, J = 7.2), 1.21 (3H, t, J = 7.3), 1.35 (2H, sx, J = 7.2), 1.69 (2H, qn, J = 7.2), 2.41 (3H, s), 2.58 (2H, q, J = 7.3), 3.76 (2H, t, J = 7.2), 6.51 (1H, s); δ_{C} (100 MHz) 11.8, 13.5, 19.8, 29.7, 31.1, 32.8, 43.0, 112.6, 144.1, 147.2; QTOF *m*/*z* 167 (MH⁺) (found: MH⁺ 167.1567, C₁₀H₁₉N₂ requires MH 167.1548).

1-(n-*butyl*)-2-*methyl*-4-(4'-(1"-*pyrrolidino*)*phenyl*)*imidazole* **9h**: R_t 12.01; LCMS *m/z* 284 (MH⁺); *cleaved material has low purity and hence not isolated.*

1-(n-*butyl*)-2-*methyl-4-phenyl-5-methylimidazole* **9i** (5.4 mg, 27%): R_t 11.06; R_f 0.39 (1:1 EtOAc/Hex); v_{max} 1606, 1718; δ_{H} (250 MHz) 0.99 (3H, t, J = 7.3), 1.41 (2H, sx, J = 7.3), 1.67 (2H, qn, J = 7.3), 2.37 (3H, s), 2.44 (3H, s), 3.80 (2H, t, J = 7.3), 7.22 (1H, t, J = 7.3), 7.38 (2H, t, J = 7.3), 7.61 (2H, d, 7.3); δ_{C} (62 MHz) 6.3, 13.4, 13.8, 20.1, 32.6, 43.7, 122.7, 125.9, 127.1, 128.3, 135.5, 135.8, 143.3; EIMS *m/z* 228 (M⁺) (found: M⁺ 228.1629, C₁₅H₂₀N₂ requires M 228.16264).

1-(n-*butyl*)-2-*acetoxymethyl-4-*(4'-*chlorophenyl*)*imidazole* **9n** (10.4 mg, 40%): R_t 11.67; R_f 0.32 (1:2 EtOAc/Hex); v_{max} 1604, 1743; δ_{H} (250 MHz) 0.97 (3H, t, J = 7.3), 1.39 (2H, sx, J = 7.3), 1.79 (2H, qn, J = 7.3), 2.11 (3H, s), 3.97 (2H, t, J = 7.3), 5.20 (2H, s), 7.20 (1H, s), 7.32 (2H, d, J = 8.6), 7.68 (2H, d, J = 8.6); δ_{C} (62 MHz) 13.8, 19.9, 21.0, 33.3, 46.4, 57.6, 116.8, 126.0, 128.8, 132.2, 132.4, 140.0, 142.4, 170.7; EIMS *m*/*z* 306(M⁺) (found: M⁺ 306.1128, C₁₆H₁₉N₂O₂ requires M 11350).

1-(n-*butyl*)-2-cyclo*hexyl*-4-(4'-*chlorophenyl*)*imidazole* **9p** (6.2 mg, 23%): R_t 13.38; R_f 0.25 (1:7 EtOAc/Hex); v_{max} 1612, 1706; δ_{H} (250 MHz) 098 (3H, t, J = 7.3), 1.23-1.47 (6H, m), 1.70-1.90 (8H, m), 2.62 (1H, tt, J = 11.4, 3.2), 3.86 (2H, t, J = 7.3), 7.04 (1H, s), 7.28 (2H, d, J = 8.6), 7.67 (2H, d, J = 8.6); δ_{C} (62 MHz) 13.7, 20.0, 25.8, 26.5, 32.1, 33.4, 36.0, 45.4, 114.5, 126,1, 128.5, 131.6, 133.4, 138.9, 152.9; EIMS *m*/*z* 316 (M⁺) (found: M⁺ 316.1710, C₁₉H₂₅N₂Cl requires M 316.17062).

1-(n-*butyl*)-2-*phenyl*-4-(4'-*chlorophenyl*)*imidazole* **9q** (21.4 mg, 81%): R_t 12.42; *R_f* 0.28 (1:4 EtOAc/Hex); v_{max} 1600, 1679; δ_{H} (250 MHz) 0.89 (3H, t, *J* = 7.4), 1.31 (2H, sx, *J* = 7.4), 7.65 (2H, qn, *J* = 7.4), 4.00 (2H, t, *J* = 7.4), 7.61 (2H, d, *J* = 8.6), 7.29-7.48 (6H, m), 7.76 (2H, d, *J* = 8.6); δ_{C} (100 MHz) 13.5, 19.7, 33.2, 46.7, 116.1, 126.1, 128.6, 129.0, 129.1, 132.2, 140.0, 148.3; EIMS *m*/*z* 310 (M⁺) (found: M⁺ 310.1234, C₁₉H₁₉N₂Cl requires M 310.12367).

1-(n-*butyl*)-2-(4"-*cyanophenyl*)-4-(4'-*chlorophenyl*)*imidazole* **9r** (22.9 mg, 80%): R_t 12.20; R_f 0.51 (1:1 EtOAc/Hex); v_{max} 1607, 1685, 2233; $\delta_{\rm H}$ (250 MHz) 0.91 (3H, t, J = 7.4), 1.30 (2H, sx, J = 7.4), 1.79 (2H, qn, J = 7.4), 4.04 (2H, t, J = 7.4), 7.34-7.38 (3H, m), 7.73-7.78 (4H, m); $\delta_{\rm C}$ (62 MHz) 13.5, 19.8, 38.2, 47.1, 126.2, 128.8, 129.4, 132.5, 132.7, 135.1, 141.0, 146.0; QTOF *m/z* 335 (M⁺) (found: MH⁺ 336.1285, C₂₀H₁₉N₃Cl requires MH 336.1267).

Side Product from Cyclisation of 80:

2,3-diketo-5-(4'-chlorophenyl)-5,6-dehydropiperidine (12.8 mg, 54%): R_t 10.99; R_f 0.20 (1:4 EtOAc/Hex); v_{max} 1596, 1695, 1765; δ_H (250 MHz) 0.96 (3H, t, J = 7.3), 1.40 (2H, sx, J = 7.3), 1.74 (2H, qn, J = 7.3), 2.01 (1H, s), 3.84 (2H, t, J = 7.3), 6.40 (1H, s), 7.42 (4H, s); δ_C (62 MHz) 13.7, 19.9, 30.5, 49.2, 111.3, 126.4, 129.6; EIMS *m*/*z* 278 (M⁺) (found: M⁺ 278.0819, C₁₄H₁₅N₂O₂Cl requires M 278.08220).

Compound structures ĊI Cl ĊI CI 0 O Ô O 0 0 0 0 N N N 8a, 87 (98) 8b, 33 (86) 8c, 58 (93) 8d, 0

8e, 88 (96)

0

 \cap

8h, 28 (71)

8i, 30 (98)

0

0.

8m, 0

8n, 51 (94)

80, 65 (91)

CI

N-(n-butyl)-N-(4'chloro-α-benzoylphenacyl)phenamide

CI

8q, 82 (97)

Buⁿ

8r, 84 (90)

Pr

0

N.

ĊN

CI

O

9a, 84 (95)

8s, 25 (71)

9b, 26 (68)

9e, 79 (86)

9f, 80 (100)

Bn

9g, 78 (96)

9c, 54 (87)

9h, 19 (49)

9i, 27 (89)

9n, 40 (73)

2,3-diketo-5-(4'chlorophenyl)-5,6-dehydropiperidine 54 (76)

9q, 81 (96)

Spectra

Figure 1. Gel phase FTIR spectra of samples **5** (first from top), *n*-butyl imine of **5** (second from top), **6** (second from bottom) and **7a** (bottom).

Figure 3. HPLC UV trace of cleavage solution from resin **7a**. Peak 1: benzoic acid; peak 2: dimethoxybenzene internal standard; peak 3: benzoyl chloride; peak 4: tertiary amide **8q**.

Figure 4. HPLC UV and SEDEX traces of crude reaction mixture of cyclisation of tertiary amide **8q** to imidazole **9q**. Trace **a**: after 8 h of reaction time, some of the tertiary amide, peak 2 has not cyclised to the imidazole, peak 1. Trace **b**: after 24 h of reaction time, all of the tertiary amide has cyclised to the imidazole, peak 3.

Figure 5. ¹H NMR spectrum of crude **8a** in CDCl₃ at 400 MHz.

Figure 6. ¹H NMR spectrum of crude **9a** in CDCl₃ at 250 MHz.

